$$$x$$$에 대한 $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$의 적분

계산기는 $$$x$$$에 대한 $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx$$$을(를) 구하시오.

풀이

멱 감소 공식 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=2 x$$$에 적용하세요:

$${\color{red}{\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}}$$

멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=2 x$$$에 적용하세요:

$${\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)$$$에 적용하세요:

$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}}}{4} = \frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4}$$

각 항별로 적분하십시오:

$$\frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos^{2}{\left(4 x \right)} d x}\right)}}}{4}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=i n t$$$에 적용하십시오:

$$- \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{\int{i n t d x}}}}{4} = - \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{i n t x}}}{4}$$

멱 감소 공식 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=4 x$$$에 적용하세요:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \cos^{2}{\left(4 x \right)} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = i n t \left(\cos{\left(8 x \right)} + 1\right)$$$에 적용하세요:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\frac{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}{2}\right)}}}{4}$$

Expand the expression:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8}$$

각 항별로 적분하십시오:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\int{i n t d x} + \int{i n t \cos{\left(8 x \right)} d x}\right)}}}{8}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=i n t$$$에 적용하십시오:

$$\frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{\int{i n t d x}}}}{8} = \frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{i n t x}}}{8}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=i n t$$$$$$f{\left(x \right)} = \cos{\left(8 x \right)}$$$에 적용하세요:

$$\frac{i n t x}{8} - \frac{{\color{red}{\int{i n t \cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{{\color{red}{i n t \int{\cos{\left(8 x \right)} d x}}}}{8}$$

$$$u=8 x$$$라 하자.

그러면 $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{8}$$$임을 얻습니다.

따라서,

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\sin{\left(u \right)}}}}{64}$$

다음 $$$u=8 x$$$을 기억하라:

$$\frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{u}} \right)}}{64} = \frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$

따라서,

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t x}{8} - \frac{i n t \sin{\left(8 x \right)}}{64}$$

간단히 하시오:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}$$

적분 상수를 추가하세요:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}+C$$

정답

$$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64} + C$$$A


Please try a new game Rotatly