$$$\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\sin{\left(x \right)}}} \right)}$$
따라서,
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}$$
적분 상수를 추가하세요:
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}+C$$
정답
$$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx = - \cos{\left(\sin{\left(x \right)} \right)} + C$$$A