$$$x$$$에 대한 $$$\frac{\ln\left(x\right)}{a^{4} x^{4}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\ln\left(x\right)}{a^{4} x^{4}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{a^{4}}$$$와 $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x^{4}}$$$에 적용하세요:
$${\color{red}{\int{\frac{\ln{\left(x \right)}}{a^{4} x^{4}} d x}}} = {\color{red}{\frac{\int{\frac{\ln{\left(x \right)}}{x^{4}} d x}}{a^{4}}}}$$
적분 $$$\int{\frac{\ln{\left(x \right)}}{x^{4}} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\ln{\left(x \right)}$$$와 $$$\operatorname{dv}=\frac{dx}{x^{4}}$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{\frac{1}{x^{4}} d x}=- \frac{1}{3 x^{3}}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{{\color{red}{\int{\frac{\ln{\left(x \right)}}{x^{4}} d x}}}}{a^{4}}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot \left(- \frac{1}{3 x^{3}}\right)-\int{\left(- \frac{1}{3 x^{3}}\right) \cdot \frac{1}{x} d x}\right)}}}{a^{4}}=\frac{{\color{red}{\left(- \int{\left(- \frac{1}{3 x^{4}}\right)d x} - \frac{\ln{\left(x \right)}}{3 x^{3}}\right)}}}{a^{4}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=- \frac{1}{3}$$$와 $$$f{\left(x \right)} = \frac{1}{x^{4}}$$$에 적용하세요:
$$\frac{- {\color{red}{\int{\left(- \frac{1}{3 x^{4}}\right)d x}}} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}} = \frac{- {\color{red}{\left(- \frac{\int{\frac{1}{x^{4}} d x}}{3}\right)}} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-4$$$에 적용합니다:
$$\frac{\frac{{\color{red}{\int{\frac{1}{x^{4}} d x}}}}{3} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}=\frac{\frac{{\color{red}{\int{x^{-4} d x}}}}{3} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}=\frac{\frac{{\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}}{3} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}=\frac{\frac{{\color{red}{\left(- \frac{x^{-3}}{3}\right)}}}{3} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}=\frac{\frac{{\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}}{3} - \frac{\ln{\left(x \right)}}{3 x^{3}}}{a^{4}}$$
따라서,
$$\int{\frac{\ln{\left(x \right)}}{a^{4} x^{4}} d x} = \frac{- \frac{\ln{\left(x \right)}}{3 x^{3}} - \frac{1}{9 x^{3}}}{a^{4}}$$
간단히 하시오:
$$\int{\frac{\ln{\left(x \right)}}{a^{4} x^{4}} d x} = \frac{- 3 \ln{\left(x \right)} - 1}{9 a^{4} x^{3}}$$
적분 상수를 추가하세요:
$$\int{\frac{\ln{\left(x \right)}}{a^{4} x^{4}} d x} = \frac{- 3 \ln{\left(x \right)} - 1}{9 a^{4} x^{3}}+C$$
정답
$$$\int \frac{\ln\left(x\right)}{a^{4} x^{4}}\, dx = \frac{- 3 \ln\left(x\right) - 1}{9 a^{4} x^{3}} + C$$$A