$$$\sqrt[3]{x} \ln\left(x\right)$$$의 적분
사용자 입력
$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\ln{\left(x \right)}$$$와 $$$\operatorname{dv}=\sqrt[3]{x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{\sqrt[3]{x} d x}=\frac{3 x^{\frac{4}{3}}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$${\color{red}{\int{\sqrt[3]{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{3 x^{\frac{4}{3}}}{4}-\int{\frac{3 x^{\frac{4}{3}}}{4} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \int{\frac{3 \sqrt[3]{x}}{4} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{3}{4}$$$와 $$$f{\left(x \right)} = \sqrt[3]{x}$$$에 적용하세요:
$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\int{\frac{3 \sqrt[3]{x}}{4} d x}}} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\left(\frac{3 \int{\sqrt[3]{x} d x}}{4}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{1}{3}$$$에 적용합니다:
$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sqrt[3]{x} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{x^{\frac{1}{3}} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}}{4}$$
따라서,
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{9 x^{\frac{4}{3}}}{16}$$
간단히 하시오:
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}$$
적분 상수를 추가하세요:
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}+C$$
정답
$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx = \frac{3 x^{\frac{4}{3}} \left(4 \ln\left(x\right) - 3\right)}{16} + C$$$A