$$$e^{x} \tan^{x}{\left(e \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$e^{x} \tan^{x}{\left(e \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int e^{x} \tan^{x}{\left(e \right)}\, dx$$$을(를) 구하시오.

삼각함수는 인수를 라디안으로 받습니다. 각도를 도 단위로 입력하려면 pi/180을 곱하세요. 예: 45°는 45*pi/180으로 쓰거나, 함수 이름에 'd'를 붙인 적절한 함수를 사용하세요. 예: sin(45°)는 sind(45)로 쓰세요.

풀이

입력이 다음과 같이 다시 쓰입니다: $$$\int{e^{x} \tan^{x}{\left(e \right)} d x}=\int{\left(e \tan{\left(e \right)}\right)^{x} d x}$$$.

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=e \tan{\left(e \right)}$$$:

$${\color{red}{\int{\left(e \tan{\left(e \right)}\right)^{x} d x}}} = {\color{red}{\frac{\left(e \tan{\left(e \right)}\right)^{x}}{\ln{\left(e \tan{\left(e \right)} \right)}}}}$$

따라서,

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{\left(e \tan{\left(e \right)}\right)^{x}}{\ln{\left(e \tan{\left(e \right)} \right)}}$$

간단히 하시오:

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln{\left(- \tan{\left(e \right)} \right)} + 1 + i \pi}$$

적분 상수를 추가하세요:

$$\int{\left(e \tan{\left(e \right)}\right)^{x} d x} = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln{\left(- \tan{\left(e \right)} \right)} + 1 + i \pi}+C$$

정답

$$$\int e^{x} \tan^{x}{\left(e \right)}\, dx = \frac{e^{x} \tan^{x}{\left(e \right)}}{\ln\left(- \tan{\left(e \right)}\right) + 1 + i \pi} + C$$$A


Please try a new game Rotatly