$$$e^{\sqrt[3]{x}}$$$의 적분
사용자 입력
$$$\int e^{\sqrt[3]{x}}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sqrt[3]{x}$$$라 하자.
그러면 $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{e^{\sqrt[3]{x}} d x}}} = {\color{red}{\int{3 u^{2} e^{u} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=3$$$와 $$$f{\left(u \right)} = u^{2} e^{u}$$$에 적용하세요:
$${\color{red}{\int{3 u^{2} e^{u} d u}}} = {\color{red}{\left(3 \int{u^{2} e^{u} d u}\right)}}$$
적분 $$$\int{u^{2} e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$을 사용하십시오.
$$$\operatorname{\mu}=u^{2}$$$와 $$$\operatorname{dv}=e^{u} du$$$라고 하자.
그러면 $$$\operatorname{d\mu}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$3 {\color{red}{\int{u^{2} e^{u} d u}}}=3 {\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}=3 {\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=2$$$와 $$$f{\left(u \right)} = u e^{u}$$$에 적용하세요:
$$3 u^{2} e^{u} - 3 {\color{red}{\int{2 u e^{u} d u}}} = 3 u^{2} e^{u} - 3 {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$
적분 $$$\int{u e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$을 사용하십시오.
$$$\operatorname{\mu}=u$$$와 $$$\operatorname{dv}=e^{u} du$$$라고 하자.
그러면 $$$\operatorname{d\mu}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$3 u^{2} e^{u} - 6 {\color{red}{\int{u e^{u} d u}}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{\int{e^{u} d u}}} = 3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{e^{u}}}$$
다음 $$$u=\sqrt[3]{x}$$$을 기억하라:
$$6 e^{{\color{red}{u}}} - 6 {\color{red}{u}} e^{{\color{red}{u}}} + 3 {\color{red}{u}}^{2} e^{{\color{red}{u}}} = 6 e^{{\color{red}{\sqrt[3]{x}}}} - 6 {\color{red}{\sqrt[3]{x}}} e^{{\color{red}{\sqrt[3]{x}}}} + 3 {\color{red}{\sqrt[3]{x}}}^{2} e^{{\color{red}{\sqrt[3]{x}}}}$$
따라서,
$$\int{e^{\sqrt[3]{x}} d x} = 3 x^{\frac{2}{3}} e^{\sqrt[3]{x}} - 6 \sqrt[3]{x} e^{\sqrt[3]{x}} + 6 e^{\sqrt[3]{x}}$$
간단히 하시오:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}$$
적분 상수를 추가하세요:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}+C$$
정답
$$$\int e^{\sqrt[3]{x}}\, dx = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}} + C$$$A