$$$e^{\sqrt{33} \sqrt{x}}$$$의 적분
사용자 입력
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sqrt{33} \sqrt{x}$$$라 하자.
그러면 $$$du=\left(\sqrt{33} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{33}}{2 \sqrt{x}} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{\sqrt{x}} = \frac{2 \sqrt{33} du}{33}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{e^{\sqrt{33} \sqrt{x}} d x}}} = {\color{red}{\int{\frac{2 u e^{u}}{33} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{2}{33}$$$와 $$$f{\left(u \right)} = u e^{u}$$$에 적용하세요:
$${\color{red}{\int{\frac{2 u e^{u}}{33} d u}}} = {\color{red}{\left(\frac{2 \int{u e^{u} d u}}{33}\right)}}$$
적분 $$$\int{u e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$을 사용하십시오.
$$$\operatorname{g}=u$$$와 $$$\operatorname{dv}=e^{u} du$$$라고 하자.
그러면 $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{2 {\color{red}{\int{u e^{u} d u}}}}{33}=\frac{2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{33}=\frac{2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{33}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$\frac{2 u e^{u}}{33} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{33} = \frac{2 u e^{u}}{33} - \frac{2 {\color{red}{e^{u}}}}{33}$$
다음 $$$u=\sqrt{33} \sqrt{x}$$$을 기억하라:
$$- \frac{2 e^{{\color{red}{u}}}}{33} + \frac{2 {\color{red}{u}} e^{{\color{red}{u}}}}{33} = - \frac{2 e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33} + \frac{2 {\color{red}{\sqrt{33} \sqrt{x}}} e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33}$$
따라서,
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \sqrt{33} \sqrt{x} e^{\sqrt{33} \sqrt{x}}}{33} - \frac{2 e^{\sqrt{33} \sqrt{x}}}{33}$$
간단히 하시오:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}$$
적분 상수를 추가하세요:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}+C$$
정답
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33} + C$$$A