$$$\frac{\sqrt{7}}{7 \sqrt{y}}$$$의 적분
사용자 입력
$$$\int \frac{\sqrt{7}}{7 \sqrt{y}}\, dy$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$을 $$$c=\frac{\sqrt{7}}{7}$$$와 $$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$에 적용하세요:
$${\color{red}{\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y}}} = {\color{red}{\left(\frac{\sqrt{7} \int{\frac{1}{\sqrt{y}} d y}}{7}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{2}$$$에 적용합니다:
$$\frac{\sqrt{7} {\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}}{7}=\frac{\sqrt{7} {\color{red}{\int{y^{- \frac{1}{2}} d y}}}}{7}=\frac{\sqrt{7} {\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 y^{\frac{1}{2}}\right)}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 \sqrt{y}\right)}}}{7}$$
따라서,
$$\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y} = \frac{2 \sqrt{7} \sqrt{y}}{7}$$
적분 상수를 추가하세요:
$$\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y} = \frac{2 \sqrt{7} \sqrt{y}}{7}+C$$
정답
$$$\int \frac{\sqrt{7}}{7 \sqrt{y}}\, dy = \frac{2 \sqrt{7} \sqrt{y}}{7} + C$$$A