$$$\frac{1}{\sqrt[3]{x - 2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{1}{\sqrt[3]{x - 2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{\sqrt[3]{x - 2}}\, dx$$$을(를) 구하시오.

풀이

$$$u=x - 2$$$라 하자.

그러면 $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{1}{\sqrt[3]{x - 2}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt[3]{u}} d u}}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{3}$$$에 적용합니다:

$${\color{red}{\int{\frac{1}{\sqrt[3]{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{3}} d u}}}={\color{red}{\frac{u^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 u^{\frac{2}{3}}}{2}\right)}}$$

다음 $$$u=x - 2$$$을 기억하라:

$$\frac{3 {\color{red}{u}}^{\frac{2}{3}}}{2} = \frac{3 {\color{red}{\left(x - 2\right)}}^{\frac{2}{3}}}{2}$$

따라서,

$$\int{\frac{1}{\sqrt[3]{x - 2}} d x} = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{\sqrt[3]{x - 2}} d x} = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2}+C$$

정답

$$$\int \frac{1}{\sqrt[3]{x - 2}}\, dx = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2} + C$$$A


Please try a new game Rotatly