$$$\frac{1}{4 \cos^{2}{\left(x \right)}}$$$의 적분
사용자 입력
$$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$에 적용하세요:
$${\color{red}{\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}{4}\right)}}$$
적분함수를 시컨트로 나타내시오.:
$$\frac{{\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}}}{4} = \frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4}$$
$$$\sec^{2}{\left(x \right)}$$$의 적분은 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4} = \frac{{\color{red}{\tan{\left(x \right)}}}}{4}$$
따라서,
$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}+C$$
정답
$$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx = \frac{\tan{\left(x \right)}}{4} + C$$$A