$$$\frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}}$$
$$$v=\ln{\left(u \right)}$$$라 하자.
그러면 $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{du}{u} = dv$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
다음 $$$v=\ln{\left(u \right)}$$$을 기억하라:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$$\ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\ln{\left({\color{red}{\sin{\left(x \right)}}} \right)}}\right| \right)}$$
따라서,
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}+C$$
정답
$$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx = \ln\left(\left|{\ln\left(\sin{\left(x \right)}\right)}\right|\right) + C$$$A