$$$\frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{3}} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-3$$$에 적용합니다:
$${\color{red}{\int{\frac{1}{u^{3}} d u}}}={\color{red}{\int{u^{-3} d u}}}={\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{u^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$$- \frac{{\color{red}{u}}^{-2}}{2} = - \frac{{\color{red}{\sin{\left(x \right)}}}^{-2}}{2}$$
따라서,
$$\int{\frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}} d x} = - \frac{1}{2 \sin^{2}{\left(x \right)}}$$
적분 상수를 추가하세요:
$$\int{\frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}} d x} = - \frac{1}{2 \sin^{2}{\left(x \right)}}+C$$
정답
$$$\int \frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}\, dx = - \frac{1}{2 \sin^{2}{\left(x \right)}} + C$$$A