$$$\cos^{11}{\left(x \right)}$$$의 적분
사용자 입력
$$$\int \cos^{11}{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
코사인 하나를 분리하고, $$$\alpha=x$$$에 대한 공식 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$을 사용하여 나머지는 모두 사인으로 표현하세요.:
$${\color{red}{\int{\cos^{11}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{5} \cos{\left(x \right)} d x}}}$$
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{5} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - u^{2}\right)^{5} d u}}}$$
Expand the expression:
$${\color{red}{\int{\left(1 - u^{2}\right)^{5} d u}}} = {\color{red}{\int{\left(- u^{10} + 5 u^{8} - 10 u^{6} + 10 u^{4} - 5 u^{2} + 1\right)d u}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- u^{10} + 5 u^{8} - 10 u^{6} + 10 u^{4} - 5 u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - \int{u^{10} d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - \int{u^{10} d u} + {\color{red}{\int{1 d u}}} = - \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - \int{u^{10} d u} + {\color{red}{u}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=10$$$에 적용합니다:
$$u - \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - {\color{red}{\int{u^{10} d u}}}=u - \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - {\color{red}{\frac{u^{1 + 10}}{1 + 10}}}=u - \int{5 u^{2} d u} + \int{10 u^{4} d u} - \int{10 u^{6} d u} + \int{5 u^{8} d u} - {\color{red}{\left(\frac{u^{11}}{11}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=10$$$와 $$$f{\left(u \right)} = u^{6}$$$에 적용하세요:
$$- \frac{u^{11}}{11} + u - \int{5 u^{2} d u} + \int{10 u^{4} d u} + \int{5 u^{8} d u} - {\color{red}{\int{10 u^{6} d u}}} = - \frac{u^{11}}{11} + u - \int{5 u^{2} d u} + \int{10 u^{4} d u} + \int{5 u^{8} d u} - {\color{red}{\left(10 \int{u^{6} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=6$$$에 적용합니다:
$$- \frac{u^{11}}{11} + u - \int{5 u^{2} d u} + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 10 {\color{red}{\int{u^{6} d u}}}=- \frac{u^{11}}{11} + u - \int{5 u^{2} d u} + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 10 {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=- \frac{u^{11}}{11} + u - \int{5 u^{2} d u} + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 10 {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=5$$$와 $$$f{\left(u \right)} = u^{2}$$$에 적용하세요:
$$- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} + u + \int{10 u^{4} d u} + \int{5 u^{8} d u} - {\color{red}{\int{5 u^{2} d u}}} = - \frac{u^{11}}{11} - \frac{10 u^{7}}{7} + u + \int{10 u^{4} d u} + \int{5 u^{8} d u} - {\color{red}{\left(5 \int{u^{2} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} + u + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 5 {\color{red}{\int{u^{2} d u}}}=- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} + u + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 5 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} + u + \int{10 u^{4} d u} + \int{5 u^{8} d u} - 5 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=5$$$와 $$$f{\left(u \right)} = u^{8}$$$에 적용하세요:
$$- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + \int{10 u^{4} d u} + {\color{red}{\int{5 u^{8} d u}}} = - \frac{u^{11}}{11} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + \int{10 u^{4} d u} + {\color{red}{\left(5 \int{u^{8} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=8$$$에 적용합니다:
$$- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + \int{10 u^{4} d u} + 5 {\color{red}{\int{u^{8} d u}}}=- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + \int{10 u^{4} d u} + 5 {\color{red}{\frac{u^{1 + 8}}{1 + 8}}}=- \frac{u^{11}}{11} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + \int{10 u^{4} d u} + 5 {\color{red}{\left(\frac{u^{9}}{9}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=10$$$와 $$$f{\left(u \right)} = u^{4}$$$에 적용하세요:
$$- \frac{u^{11}}{11} + \frac{5 u^{9}}{9} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + {\color{red}{\int{10 u^{4} d u}}} = - \frac{u^{11}}{11} + \frac{5 u^{9}}{9} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + {\color{red}{\left(10 \int{u^{4} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$- \frac{u^{11}}{11} + \frac{5 u^{9}}{9} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + 10 {\color{red}{\int{u^{4} d u}}}=- \frac{u^{11}}{11} + \frac{5 u^{9}}{9} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + 10 {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- \frac{u^{11}}{11} + \frac{5 u^{9}}{9} - \frac{10 u^{7}}{7} - \frac{5 u^{3}}{3} + u + 10 {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$${\color{red}{u}} - \frac{5 {\color{red}{u}}^{3}}{3} + 2 {\color{red}{u}}^{5} - \frac{10 {\color{red}{u}}^{7}}{7} + \frac{5 {\color{red}{u}}^{9}}{9} - \frac{{\color{red}{u}}^{11}}{11} = {\color{red}{\sin{\left(x \right)}}} - \frac{5 {\color{red}{\sin{\left(x \right)}}}^{3}}{3} + 2 {\color{red}{\sin{\left(x \right)}}}^{5} - \frac{10 {\color{red}{\sin{\left(x \right)}}}^{7}}{7} + \frac{5 {\color{red}{\sin{\left(x \right)}}}^{9}}{9} - \frac{{\color{red}{\sin{\left(x \right)}}}^{11}}{11}$$
따라서,
$$\int{\cos^{11}{\left(x \right)} d x} = - \frac{\sin^{11}{\left(x \right)}}{11} + \frac{5 \sin^{9}{\left(x \right)}}{9} - \frac{10 \sin^{7}{\left(x \right)}}{7} + 2 \sin^{5}{\left(x \right)} - \frac{5 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$
간단히 하시오:
$$\int{\cos^{11}{\left(x \right)} d x} = \frac{\left(- 63 \sin^{10}{\left(x \right)} + 385 \sin^{8}{\left(x \right)} - 990 \sin^{6}{\left(x \right)} + 1386 \sin^{4}{\left(x \right)} - 1155 \sin^{2}{\left(x \right)} + 693\right) \sin{\left(x \right)}}{693}$$
적분 상수를 추가하세요:
$$\int{\cos^{11}{\left(x \right)} d x} = \frac{\left(- 63 \sin^{10}{\left(x \right)} + 385 \sin^{8}{\left(x \right)} - 990 \sin^{6}{\left(x \right)} + 1386 \sin^{4}{\left(x \right)} - 1155 \sin^{2}{\left(x \right)} + 693\right) \sin{\left(x \right)}}{693}+C$$
정답
$$$\int \cos^{11}{\left(x \right)}\, dx = \frac{\left(- 63 \sin^{10}{\left(x \right)} + 385 \sin^{8}{\left(x \right)} - 990 \sin^{6}{\left(x \right)} + 1386 \sin^{4}{\left(x \right)} - 1155 \sin^{2}{\left(x \right)} + 693\right) \sin{\left(x \right)}}{693} + C$$$A