$$$9 \cdot 15^{- x} x^{2}$$$의 적분
사용자 입력
$$$\int 9 \cdot 15^{- x} x^{2}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=9$$$와 $$$f{\left(x \right)} = 15^{- x} x^{2}$$$에 적용하세요:
$${\color{red}{\int{9 \cdot 15^{- x} x^{2} d x}}} = {\color{red}{\left(9 \int{15^{- x} x^{2} d x}\right)}}$$
적분 $$$\int{15^{- x} x^{2} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{2}$$$와 $$$\operatorname{dv}=15^{- x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$9 {\color{red}{\int{15^{- x} x^{2} d x}}}=9 {\color{red}{\left(x^{2} \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 2 x d x}\right)}}=9 {\color{red}{\left(- \int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x^{2}}{\ln{\left(15 \right)}}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=- \frac{2}{\ln{\left(15 \right)}}$$$와 $$$f{\left(x \right)} = 15^{- x} x$$$에 적용하세요:
$$- 9 {\color{red}{\int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x}}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = - 9 {\color{red}{\left(- \frac{2 \int{15^{- x} x d x}}{\ln{\left(15 \right)}}\right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
적분 $$$\int{15^{- x} x d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=15^{- x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{18 {\color{red}{\int{15^{- x} x d x}}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(x \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 1 d x}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(- \int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=- \frac{1}{\ln{\left(15 \right)}}$$$와 $$$f{\left(x \right)} = 15^{- x}$$$에 적용하세요:
$$\frac{18 \left(- {\color{red}{\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x}}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- {\color{red}{\left(- \frac{\int{15^{- x} d x}}{\ln{\left(15 \right)}}\right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
$$$u=- x$$$라 하자.
그러면 $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - du$$$임을 얻습니다.
따라서,
$$\frac{18 \left(\frac{{\color{red}{\int{15^{- x} d x}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = 15^{u}$$$에 적용하세요:
$$\frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\left(- \int{15^{u} d u}\right)}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=15$$$:
$$\frac{18 \left(- \frac{{\color{red}{\int{15^{u} d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{{\color{red}{\frac{15^{u}}{\ln{\left(15 \right)}}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
다음 $$$u=- x$$$을 기억하라:
$$\frac{18 \left(- \frac{15^{{\color{red}{u}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{15^{{\color{red}{\left(- x\right)}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
따라서,
$$\int{9 \cdot 15^{- x} x^{2} d x} = \frac{18 \left(- \frac{15^{- x} x}{\ln{\left(15 \right)}} - \frac{15^{- x}}{\ln{\left(15 \right)}^{2}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$
간단히 하시오:
$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}$$
적분 상수를 추가하세요:
$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}+C$$
정답
$$$\int 9 \cdot 15^{- x} x^{2}\, dx = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln^{2}\left(15\right) + 2 x \ln\left(15\right) + 2\right)}{\ln^{3}\left(15\right)} + C$$$A