$$$8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int 8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=8$$$와 $$$f{\left(x \right)} = \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$에 적용하세요:
$${\color{red}{\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = {\color{red}{\left(8 \int{\tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}\right)}}$$
$$$u=\sec{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$8 {\color{red}{\int{\tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = 8 {\color{red}{\int{u^{2} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$8 {\color{red}{\int{u^{2} d u}}}=8 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=8 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
다음 $$$u=\sec{\left(x \right)}$$$을 기억하라:
$$\frac{8 {\color{red}{u}}^{3}}{3} = \frac{8 {\color{red}{\sec{\left(x \right)}}}^{3}}{3}$$
따라서,
$$\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{8 \sec^{3}{\left(x \right)}}{3}$$
적분 상수를 추가하세요:
$$\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{8 \sec^{3}{\left(x \right)}}{3}+C$$
정답
$$$\int 8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx = \frac{8 \sec^{3}{\left(x \right)}}{3} + C$$$A