$$$\frac{6}{\left(3 x - 2\right)^{3}}$$$의 적분
사용자 입력
$$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=6$$$와 $$$f{\left(x \right)} = \frac{1}{\left(3 x - 2\right)^{3}}$$$에 적용하세요:
$${\color{red}{\int{\frac{6}{\left(3 x - 2\right)^{3}} d x}}} = {\color{red}{\left(6 \int{\frac{1}{\left(3 x - 2\right)^{3}} d x}\right)}}$$
$$$u=3 x - 2$$$라 하자.
그러면 $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$6 {\color{red}{\int{\frac{1}{\left(3 x - 2\right)^{3}} d x}}} = 6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$에 적용하세요:
$$6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}} = 6 {\color{red}{\left(\frac{\int{\frac{1}{u^{3}} d u}}{3}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-3$$$에 적용합니다:
$$2 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=2 {\color{red}{\int{u^{-3} d u}}}=2 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=2 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=2 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
다음 $$$u=3 x - 2$$$을 기억하라:
$$- {\color{red}{u}}^{-2} = - {\color{red}{\left(3 x - 2\right)}}^{-2}$$
따라서,
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}$$
적분 상수를 추가하세요:
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}+C$$
정답
$$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx = - \frac{1}{\left(3 x - 2\right)^{2}} + C$$$A