$$$4 \sin{\left(\frac{\pi t}{2} \right)}$$$의 적분
사용자 입력
$$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=4$$$와 $$$f{\left(t \right)} = \sin{\left(\frac{\pi t}{2} \right)}$$$에 적용하세요:
$${\color{red}{\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t}}} = {\color{red}{\left(4 \int{\sin{\left(\frac{\pi t}{2} \right)} d t}\right)}}$$
$$$u=\frac{\pi t}{2}$$$라 하자.
그러면 $$$du=\left(\frac{\pi t}{2}\right)^{\prime }dt = \frac{\pi}{2} dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{2 du}{\pi}$$$임을 얻습니다.
따라서,
$$4 {\color{red}{\int{\sin{\left(\frac{\pi t}{2} \right)} d t}}} = 4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{2}{\pi}$$$와 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$에 적용하세요:
$$4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}} = 4 {\color{red}{\left(\frac{2 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$
사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{8 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{8 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
다음 $$$u=\frac{\pi t}{2}$$$을 기억하라:
$$- \frac{8 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{8 \cos{\left({\color{red}{\left(\frac{\pi t}{2}\right)}} \right)}}{\pi}$$
따라서,
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}$$
적분 상수를 추가하세요:
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}+C$$
정답
$$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi} + C$$$A