$$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=28 \sin{\left(3 \right)}$$$와 $$$f{\left(x \right)} = x \cos{\left(7 x \right)}$$$에 적용하세요:
$${\color{red}{\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(28 \sin{\left(3 \right)} \int{x \cos{\left(7 x \right)} d x}\right)}}$$
적분 $$$\int{x \cos{\left(7 x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=\cos{\left(7 x \right)} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{\cos{\left(7 x \right)} d x}=\frac{\sin{\left(7 x \right)}}{7}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$28 \sin{\left(3 \right)} {\color{red}{\int{x \cos{\left(7 x \right)} d x}}}=28 \sin{\left(3 \right)} {\color{red}{\left(x \cdot \frac{\sin{\left(7 x \right)}}{7}-\int{\frac{\sin{\left(7 x \right)}}{7} \cdot 1 d x}\right)}}=28 \sin{\left(3 \right)} {\color{red}{\left(\frac{x \sin{\left(7 x \right)}}{7} - \int{\frac{\sin{\left(7 x \right)}}{7} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{7}$$$와 $$$f{\left(x \right)} = \sin{\left(7 x \right)}$$$에 적용하세요:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\int{\frac{\sin{\left(7 x \right)}}{7} d x}}}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\left(\frac{\int{\sin{\left(7 x \right)} d x}}{7}\right)}}\right)$$
$$$u=7 x$$$라 하자.
그러면 $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{7}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(7 x \right)} d x}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right)$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{7}$$$와 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$에 적용하세요:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$
사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{49}\right)$$
다음 $$$u=7 x$$$을 기억하라:
$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{u}} \right)}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$
따라서,
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = 28 \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left(7 x \right)}}{49}\right) \sin{\left(3 \right)}$$
간단히 하시오:
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}$$
적분 상수를 추가하세요:
$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}+C$$
정답
$$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7} + C$$$A