$$$z$$$에 대한 $$$- z_{2} \left(3 z - 3\right) + 4$$$의 적분
사용자 입력
$$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z}}} = {\color{red}{\left(\int{4 d z} - \int{z_{2} \left(3 z - 3\right) d z}\right)}}$$
상수 법칙 $$$\int c\, dz = c z$$$을 $$$c=4$$$에 적용하십시오:
$$- \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\int{4 d z}}} = - \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\left(4 z\right)}}$$
피적분함수를 단순화하세요.:
$$4 z - {\color{red}{\int{z_{2} \left(3 z - 3\right) d z}}} = 4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}}$$
상수배 법칙 $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$을 $$$c=3 z_{2}$$$와 $$$f{\left(z \right)} = z - 1$$$에 적용하세요:
$$4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}} = 4 z - {\color{red}{\left(3 z_{2} \int{\left(z - 1\right)d z}\right)}}$$
각 항별로 적분하십시오:
$$4 z - 3 z_{2} {\color{red}{\int{\left(z - 1\right)d z}}} = 4 z - 3 z_{2} {\color{red}{\left(- \int{1 d z} + \int{z d z}\right)}}$$
상수 법칙 $$$\int c\, dz = c z$$$을 $$$c=1$$$에 적용하십시오:
$$4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{\int{1 d z}}}\right) = 4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{z}}\right)$$
멱법칙($$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$4 z - 3 z_{2} \left(- z + {\color{red}{\int{z d z}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\frac{z^{1 + 1}}{1 + 1}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\left(\frac{z^{2}}{2}\right)}}\right)$$
따라서,
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = 4 z - 3 z_{2} \left(\frac{z^{2}}{2} - z\right)$$
간단히 하시오:
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}+C$$
정답
$$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2} + C$$$A