$$$\frac{2 t}{\left(t - 3\right)^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{2 t}{\left(t - 3\right)^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=2$$$$$$f{\left(t \right)} = \frac{t}{\left(t - 3\right)^{2}}$$$에 적용하세요:

$${\color{red}{\int{\frac{2 t}{\left(t - 3\right)^{2}} d t}}} = {\color{red}{\left(2 \int{\frac{t}{\left(t - 3\right)^{2}} d t}\right)}}$$

피적분함수의 분자를 $$$t=t - 3+3$$$로 다시 쓰고 분수를 분해하세요:

$$2 {\color{red}{\int{\frac{t}{\left(t - 3\right)^{2}} d t}}} = 2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}}$$

각 항별로 적분하십시오:

$$2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}} = 2 {\color{red}{\left(\int{\frac{3}{\left(t - 3\right)^{2}} d t} + \int{\frac{1}{t - 3} d t}\right)}}$$

$$$u=t - 3$$$라 하자.

그러면 $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{t - 3} d t}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

다음 $$$u=t - 3$$$을 기억하라:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{{\color{red}{\left(t - 3\right)}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=3$$$$$$f{\left(t \right)} = \frac{1}{\left(t - 3\right)^{2}}$$$에 적용하세요:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\int{\frac{3}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\left(3 \int{\frac{1}{\left(t - 3\right)^{2}} d t}\right)}}$$

$$$u=t - 3$$$라 하자.

그러면 $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{u^{-2} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- u^{-1}\right)}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- \frac{1}{u}\right)}}$$

다음 $$$u=t - 3$$$을 기억하라:

$$2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{u}}^{-1} = 2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{\left(t - 3\right)}}^{-1}$$

따라서,

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{t - 3}\right| \right)} - \frac{6}{t - 3}$$

간단히 하시오:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}$$

적분 상수를 추가하세요:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}+C$$

정답

$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt = \frac{2 \left(\left(t - 3\right) \ln\left(\left|{t - 3}\right|\right) - 3\right)}{t - 3} + C$$$A


Please try a new game Rotatly