$$$\frac{2 t}{\left(t - 3\right)^{2}}$$$의 적분
사용자 입력
$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=2$$$와 $$$f{\left(t \right)} = \frac{t}{\left(t - 3\right)^{2}}$$$에 적용하세요:
$${\color{red}{\int{\frac{2 t}{\left(t - 3\right)^{2}} d t}}} = {\color{red}{\left(2 \int{\frac{t}{\left(t - 3\right)^{2}} d t}\right)}}$$
피적분함수의 분자를 $$$t=t - 3+3$$$로 다시 쓰고 분수를 분해하세요:
$$2 {\color{red}{\int{\frac{t}{\left(t - 3\right)^{2}} d t}}} = 2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}}$$
각 항별로 적분하십시오:
$$2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}} = 2 {\color{red}{\left(\int{\frac{3}{\left(t - 3\right)^{2}} d t} + \int{\frac{1}{t - 3} d t}\right)}}$$
$$$u=t - 3$$$라 하자.
그러면 $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{t - 3} d t}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=t - 3$$$을 기억하라:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{{\color{red}{\left(t - 3\right)}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=3$$$와 $$$f{\left(t \right)} = \frac{1}{\left(t - 3\right)^{2}}$$$에 적용하세요:
$$2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\int{\frac{3}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\left(3 \int{\frac{1}{\left(t - 3\right)^{2}} d t}\right)}}$$
$$$u=t - 3$$$라 하자.
그러면 $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{u^{-2} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- u^{-1}\right)}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- \frac{1}{u}\right)}}$$
다음 $$$u=t - 3$$$을 기억하라:
$$2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{u}}^{-1} = 2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{\left(t - 3\right)}}^{-1}$$
따라서,
$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{t - 3}\right| \right)} - \frac{6}{t - 3}$$
간단히 하시오:
$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}$$
적분 상수를 추가하세요:
$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}+C$$
정답
$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt = \frac{2 \left(\left(t - 3\right) \ln\left(\left|{t - 3}\right|\right) - 3\right)}{t - 3} + C$$$A