$$$- 5 x + 2 e^{x} - 10 e^{- x}$$$의 적분
사용자 입력
$$$\int \left(- 5 x + 2 e^{x} - 10 e^{- x}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- 5 x + 2 e^{x} - 10 e^{- x}\right)d x}}} = {\color{red}{\left(- \int{5 x d x} - \int{10 e^{- x} d x} + \int{2 e^{x} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=10$$$와 $$$f{\left(x \right)} = e^{- x}$$$에 적용하세요:
$$- \int{5 x d x} + \int{2 e^{x} d x} - {\color{red}{\int{10 e^{- x} d x}}} = - \int{5 x d x} + \int{2 e^{x} d x} - {\color{red}{\left(10 \int{e^{- x} d x}\right)}}$$
$$$u=- x$$$라 하자.
그러면 $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - du$$$임을 얻습니다.
따라서,
$$- \int{5 x d x} + \int{2 e^{x} d x} - 10 {\color{red}{\int{e^{- x} d x}}} = - \int{5 x d x} + \int{2 e^{x} d x} - 10 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$- \int{5 x d x} + \int{2 e^{x} d x} - 10 {\color{red}{\int{\left(- e^{u}\right)d u}}} = - \int{5 x d x} + \int{2 e^{x} d x} - 10 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$- \int{5 x d x} + \int{2 e^{x} d x} + 10 {\color{red}{\int{e^{u} d u}}} = - \int{5 x d x} + \int{2 e^{x} d x} + 10 {\color{red}{e^{u}}}$$
다음 $$$u=- x$$$을 기억하라:
$$- \int{5 x d x} + \int{2 e^{x} d x} + 10 e^{{\color{red}{u}}} = - \int{5 x d x} + \int{2 e^{x} d x} + 10 e^{{\color{red}{\left(- x\right)}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=5$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$\int{2 e^{x} d x} - {\color{red}{\int{5 x d x}}} + 10 e^{- x} = \int{2 e^{x} d x} - {\color{red}{\left(5 \int{x d x}\right)}} + 10 e^{- x}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\int{2 e^{x} d x} - 5 {\color{red}{\int{x d x}}} + 10 e^{- x}=\int{2 e^{x} d x} - 5 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} + 10 e^{- x}=\int{2 e^{x} d x} - 5 {\color{red}{\left(\frac{x^{2}}{2}\right)}} + 10 e^{- x}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = e^{x}$$$에 적용하세요:
$$- \frac{5 x^{2}}{2} + {\color{red}{\int{2 e^{x} d x}}} + 10 e^{- x} = - \frac{5 x^{2}}{2} + {\color{red}{\left(2 \int{e^{x} d x}\right)}} + 10 e^{- x}$$
지수 함수의 적분은 $$$\int{e^{x} d x} = e^{x}$$$입니다:
$$- \frac{5 x^{2}}{2} + 2 {\color{red}{\int{e^{x} d x}}} + 10 e^{- x} = - \frac{5 x^{2}}{2} + 2 {\color{red}{e^{x}}} + 10 e^{- x}$$
따라서,
$$\int{\left(- 5 x + 2 e^{x} - 10 e^{- x}\right)d x} = - \frac{5 x^{2}}{2} + 2 e^{x} + 10 e^{- x}$$
적분 상수를 추가하세요:
$$\int{\left(- 5 x + 2 e^{x} - 10 e^{- x}\right)d x} = - \frac{5 x^{2}}{2} + 2 e^{x} + 10 e^{- x}+C$$
정답
$$$\int \left(- 5 x + 2 e^{x} - 10 e^{- x}\right)\, dx = \left(- \frac{5 x^{2}}{2} + 2 e^{x} + 10 e^{- x}\right) + C$$$A