$$$x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x}}} = {\color{red}{\left(- \int{\left(31 x - 31\right) \left(x e^{2} - 4\right) d x} + \int{x \left(21 x - 21\right) e^{2} d x}\right)}}$$
피적분함수를 단순화하세요.:
$$\int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{\left(31 x - 31\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{31 \left(x - 1\right) \left(x e^{2} - 4\right) d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=31$$$와 $$$f{\left(x \right)} = \left(x - 1\right) \left(x e^{2} - 4\right)$$$에 적용하세요:
$$\int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{31 \left(x - 1\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\left(31 \int{\left(x - 1\right) \left(x e^{2} - 4\right) d x}\right)}}$$
Expand the expression:
$$\int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x - 1\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x^{2} e^{2} - x e^{2} - 4 x + 4\right)d x}}}$$
각 항별로 적분하십시오:
$$\int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x^{2} e^{2} - x e^{2} - 4 x + 4\right)d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\left(\int{4 d x} - \int{4 x d x} - \int{x e^{2} d x} + \int{x^{2} e^{2} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=4$$$에 적용하십시오:
$$31 \int{4 x d x} + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{4 d x}}} = 31 \int{4 x d x} + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\left(4 x\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\int{4 x d x}}} = - 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\left(4 \int{x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\int{x d x}}}=- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=e^{2}$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용하세요:
$$62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{x^{2} e^{2} d x}}} = 62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{e^{2} \int{x^{2} d x}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\int{x^{2} d x}}}=62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=e^{2}$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\int{x e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{e^{2} \int{x d x}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\int{x d x}}}=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
피적분함수를 단순화하세요.:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{x \left(21 x - 21\right) e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{21 x \left(x - 1\right) e^{2} d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=21 e^{2}$$$와 $$$f{\left(x \right)} = x \left(x - 1\right)$$$에 적용하세요:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{21 x \left(x - 1\right) e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\left(21 e^{2} \int{x \left(x - 1\right) d x}\right)}}$$
Expand the expression:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{x \left(x - 1\right) d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{\left(x^{2} - x\right)d x}}}$$
각 항별로 적분하십시오:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{\left(x^{2} - x\right)d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\left(- \int{x d x} + \int{x^{2} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\int{x^{2} d x}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\int{x d x}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$
따라서,
$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right) e^{2}$$
간단히 하시오:
$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3}$$
적분 상수를 추가하세요:
$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3}+C$$
정답
$$$\int \left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)\, dx = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3} + C$$$A