$$$x$$$에 대한 $$$- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)\, dx$$$을(를) 구하시오.
풀이
입력이 다음과 같이 다시 쓰입니다: $$$\int{\left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)d x}=\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x}$$$.
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x}}} = {\color{red}{\left(\int{880 d x} - \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=880$$$에 적용하십시오:
$$- \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} + {\color{red}{\int{880 d x}}} = - \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} + {\color{red}{\left(880 x\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\int{x^{2} d x}}}=880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t}$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용하세요:
$$- \frac{x^{3}}{3} + 880 x - {\color{red}{\int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x}}} = - \frac{x^{3}}{3} + 880 x - {\color{red}{\left(4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} \int{x^{2} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\int{x^{2} d x}}} - \frac{x^{3}}{3} + 880 x=- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}} - \frac{x^{3}}{3} + 880 x=- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\left(\frac{x^{3}}{3}\right)}} - \frac{x^{3}}{3} + 880 x$$
따라서,
$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = - \frac{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{3}}{3} - \frac{x^{3}}{3} + 880 x$$
간단히 하시오:
$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3}$$
적분 상수를 추가하세요:
$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3}+C$$
정답
$$$\int \left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)\, dx = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3} + C$$$A