$$$2 x^{3} - 8 x - 1$$$의 적분
사용자 입력
$$$\int \left(2 x^{3} - 8 x - 1\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(2 x^{3} - 8 x - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{8 x d x} + \int{2 x^{3} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{8 x d x} + \int{2 x^{3} d x} - {\color{red}{\int{1 d x}}} = - \int{8 x d x} + \int{2 x^{3} d x} - {\color{red}{x}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=8$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$- x + \int{2 x^{3} d x} - {\color{red}{\int{8 x d x}}} = - x + \int{2 x^{3} d x} - {\color{red}{\left(8 \int{x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- x + \int{2 x^{3} d x} - 8 {\color{red}{\int{x d x}}}=- x + \int{2 x^{3} d x} - 8 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x + \int{2 x^{3} d x} - 8 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = x^{3}$$$에 적용하세요:
$$- 4 x^{2} - x + {\color{red}{\int{2 x^{3} d x}}} = - 4 x^{2} - x + {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=3$$$에 적용합니다:
$$- 4 x^{2} - x + 2 {\color{red}{\int{x^{3} d x}}}=- 4 x^{2} - x + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 4 x^{2} - x + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
따라서,
$$\int{\left(2 x^{3} - 8 x - 1\right)d x} = \frac{x^{4}}{2} - 4 x^{2} - x$$
간단히 하시오:
$$\int{\left(2 x^{3} - 8 x - 1\right)d x} = \frac{x \left(x^{3} - 8 x - 2\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\left(2 x^{3} - 8 x - 1\right)d x} = \frac{x \left(x^{3} - 8 x - 2\right)}{2}+C$$
정답
$$$\int \left(2 x^{3} - 8 x - 1\right)\, dx = \frac{x \left(x^{3} - 8 x - 2\right)}{2} + C$$$A