$$$- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=- 10 \cot{\left(1 \right)}$$$와 $$$f{\left(x \right)} = 1 - x^{3}$$$에 적용하세요:
$${\color{red}{\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- 10 \cot{\left(1 \right)} \int{\left(1 - x^{3}\right)d x}\right)}}$$
각 항별로 적분하십시오:
$$- 10 \cot{\left(1 \right)} {\color{red}{\int{\left(1 - x^{3}\right)d x}}} = - 10 \cot{\left(1 \right)} {\color{red}{\left(\int{1 d x} - \int{x^{3} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- 10 \cot{\left(1 \right)} \left(- \int{x^{3} d x} + {\color{red}{\int{1 d x}}}\right) = - 10 \cot{\left(1 \right)} \left(- \int{x^{3} d x} + {\color{red}{x}}\right)$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=3$$$에 적용합니다:
$$- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\int{x^{3} d x}}}\right)=- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}\right)=- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\left(\frac{x^{4}}{4}\right)}}\right)$$
따라서,
$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = - 10 \left(- \frac{x^{4}}{4} + x\right) \cot{\left(1 \right)}$$
간단히 하시오:
$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2}+C$$
정답
$$$\int \left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)\, dx = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2} + C$$$A