$$$v^{2} - v$$$의 적분
사용자 입력
$$$\int \left(v^{2} - v\right)\, dv$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(v^{2} - v\right)d v}}} = {\color{red}{\left(- \int{v d v} + \int{v^{2} d v}\right)}}$$
멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \int{v d v} + {\color{red}{\int{v^{2} d v}}}=- \int{v d v} + {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- \int{v d v} + {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$
멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\frac{v^{3}}{3} - {\color{red}{\int{v d v}}}=\frac{v^{3}}{3} - {\color{red}{\frac{v^{1 + 1}}{1 + 1}}}=\frac{v^{3}}{3} - {\color{red}{\left(\frac{v^{2}}{2}\right)}}$$
따라서,
$$\int{\left(v^{2} - v\right)d v} = \frac{v^{3}}{3} - \frac{v^{2}}{2}$$
간단히 하시오:
$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}$$
적분 상수를 추가하세요:
$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}+C$$
정답
$$$\int \left(v^{2} - v\right)\, dv = \frac{v^{2} \left(2 v - 3\right)}{6} + C$$$A