$$$\frac{1}{\tan{\left(x \right)}}$$$의 적분
사용자 입력
$$$\int \frac{1}{\tan{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
$$$u=\tan{\left(x \right)}$$$라 하자.
그러면 $$$x=\operatorname{atan}{\left(u \right)}$$$ 및 $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (단계는 »에서 볼 수 있습니다).
따라서,
$${\color{red}{\int{\frac{1}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \left(u^{2} + 1\right)} d u}}}$$
$$$v=u^{2} + 1$$$라 하자.
그러면 $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$u du = \frac{dv}{2}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\frac{1}{u \left(u^{2} + 1\right)} d u}}} = {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$에 적용하세요:
$${\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$\frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$
$$$w=v - 1$$$라 하자.
그러면 $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dv = dw$$$임을 얻습니다.
따라서,
$$- \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = - \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$
$$$\frac{1}{w}$$$의 적분은 $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:
$$- \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$
다음 $$$w=v - 1$$$을 기억하라:
$$\frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} - \frac{\int{\frac{1}{v} d v}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} - \frac{\int{\frac{1}{v} d v}}{2}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
다음 $$$v=u^{2} + 1$$$을 기억하라:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$
다음 $$$u=\tan{\left(x \right)}$$$을 기억하라:
$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} + \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = - \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} + \frac{\ln{\left({\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2}$$
따라서,
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\ln{\left(\tan^{2}{\left(x \right)} \right)}}{2}$$
간단히 하시오:
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \ln{\left(\tan{\left(x \right)} \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \ln{\left(\tan{\left(x \right)} \right)}+C$$
정답
$$$\int \frac{1}{\tan{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \ln\left(\tan{\left(x \right)}\right)\right) + C$$$A