$$$x$$$에 대한 $$$\left(- a + x\right)^{- p}$$$의 적분
사용자 입력
$$$\int \left(- a + x\right)^{- p}\, dx$$$을(를) 구하시오.
풀이
입력이 다음과 같이 다시 쓰입니다: $$$\int{\left(- a + x\right)^{- p} d x}=\int{\left(\frac{1}{- a + x}\right)^{p} d x}$$$.
$$$u=- a + x$$$라 하자.
그러면 $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\left(\frac{1}{- a + x}\right)^{p} d x}}} = {\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}}$$
$$$v=\frac{1}{u}$$$라 하자.
그러면 $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{du}{u^{2}} = - dv$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}} = {\color{red}{\int{\left(- v^{p - 2}\right)d v}}}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=-1$$$와 $$$f{\left(v \right)} = v^{p - 2}$$$에 적용하세요:
$${\color{red}{\int{\left(- v^{p - 2}\right)d v}}} = {\color{red}{\left(- \int{v^{p - 2} d v}\right)}}$$
멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=p - 2$$$에 적용합니다:
$$- {\color{red}{\int{v^{p - 2} d v}}}=- {\color{red}{\frac{v^{\left(p - 2\right) + 1}}{\left(p - 2\right) + 1}}}=- {\color{red}{\frac{v^{p - 1}}{p - 1}}}$$
다음 $$$v=\frac{1}{u}$$$을 기억하라:
$$- \frac{{\color{red}{v}}^{p - 1}}{p - 1} = - \frac{{\color{red}{\frac{1}{u}}}^{p - 1}}{p - 1}$$
다음 $$$u=- a + x$$$을 기억하라:
$$- \frac{\left({\color{red}{u}}^{-1}\right)^{p - 1}}{p - 1} = - \frac{\left({\color{red}{\left(- a + x\right)}}^{-1}\right)^{p - 1}}{p - 1}$$
따라서,
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}$$
적분 상수를 추가하세요:
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}+C$$
정답
$$$\int \left(- a + x\right)^{- p}\, dx = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1} + C$$$A