$$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{\sqrt{11}}{22}$$$$$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$에 적용하세요:

$${\color{red}{\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x}}} = {\color{red}{\left(\frac{\sqrt{11} \int{e^{- \frac{x}{2}} d x}}{22}\right)}}$$

$$$u=- \frac{x}{2}$$$라 하자.

그러면 $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - 2 du$$$임을 얻습니다.

따라서,

$$\frac{\sqrt{11} {\color{red}{\int{e^{- \frac{x}{2}} d x}}}}{22} = \frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=-2$$$$$$f{\left(u \right)} = e^{u}$$$에 적용하세요:

$$\frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22} = \frac{\sqrt{11} {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}}{22}$$

지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:

$$- \frac{\sqrt{11} {\color{red}{\int{e^{u} d u}}}}{11} = - \frac{\sqrt{11} {\color{red}{e^{u}}}}{11}$$

다음 $$$u=- \frac{x}{2}$$$을 기억하라:

$$- \frac{\sqrt{11} e^{{\color{red}{u}}}}{11} = - \frac{\sqrt{11} e^{{\color{red}{\left(- \frac{x}{2}\right)}}}}{11}$$

따라서,

$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}$$

적분 상수를 추가하세요:

$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}+C$$

정답

$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11} + C$$$A


Please try a new game Rotatly