$$$\frac{1}{\left(3 x - 1\right)^{2}}$$$의 적분
사용자 입력
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx$$$을(를) 구하시오.
풀이
$$$u=3 x - 1$$$라 하자.
그러면 $$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{1}{\left(3 x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{3 u^{2}} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$에 적용하세요:
$${\color{red}{\int{\frac{1}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2}} d u}}{3}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{3}=\frac{{\color{red}{\int{u^{-2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{3}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{3}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{3}$$
다음 $$$u=3 x - 1$$$을 기억하라:
$$- \frac{{\color{red}{u}}^{-1}}{3} = - \frac{{\color{red}{\left(3 x - 1\right)}}^{-1}}{3}$$
따라서,
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{3 \left(3 x - 1\right)}$$
간단히 하시오:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}+C$$
정답
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx = - \frac{1}{9 x - 3} + C$$$A