$$$\frac{1}{1 - \cos{\left(2 x \right)}}$$$의 적분
사용자 입력
$$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx$$$을(를) 구하시오.
풀이
$$$u=2 x$$$라 하자.
그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=- \frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)} - 1}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}{2}\right)}}$$
$$$\cos\left( u \right)=1-2\sin^2\left(\frac{ u }{2}\right)$$$ 배각공식을 사용하여 코사인을 다시 쓰고 단순화하세요.:
$$- \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2}$$
$$$v=\frac{u}{2}$$$라 하자.
그러면 $$$dv=\left(\frac{u}{2}\right)^{\prime }du = \frac{du}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = 2 dv$$$임을 얻습니다.
따라서,
$$- \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=-1$$$와 $$$f{\left(v \right)} = \frac{1}{\sin^{2}{\left(v \right)}}$$$에 적용하세요:
$$- \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{\sin^{2}{\left(v \right)}} d v}\right)}}}{2}$$
피적분함수를 코시컨트 함수로 다시 쓰시오:
$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(v \right)}} d v}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2}$$
$$$\csc^{2}{\left(v \right)}$$$의 적분은 $$$\int{\csc^{2}{\left(v \right)} d v} = - \cot{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(v \right)}\right)}}}{2}$$
다음 $$$v=\frac{u}{2}$$$을 기억하라:
$$- \frac{\cot{\left({\color{red}{v}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(\frac{u}{2}\right)}} \right)}}{2}$$
다음 $$$u=2 x$$$을 기억하라:
$$- \frac{\cot{\left(\frac{{\color{red}{u}}}{2} \right)}}{2} = - \frac{\cot{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}{2}$$
따라서,
$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}+C$$
정답
$$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx = - \frac{\cot{\left(x \right)}}{2} + C$$$A