$$$- 6 \operatorname{asin}{\left(5 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- 6 \operatorname{asin}{\left(5 x \right)}\right)\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-6$$$와 $$$f{\left(x \right)} = \operatorname{asin}{\left(5 x \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(- 6 \operatorname{asin}{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(- 6 \int{\operatorname{asin}{\left(5 x \right)} d x}\right)}}$$
$$$u=5 x$$$라 하자.
그러면 $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{5}$$$임을 얻습니다.
따라서,
$$- 6 {\color{red}{\int{\operatorname{asin}{\left(5 x \right)} d x}}} = - 6 {\color{red}{\int{\frac{\operatorname{asin}{\left(u \right)}}{5} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{5}$$$와 $$$f{\left(u \right)} = \operatorname{asin}{\left(u \right)}$$$에 적용하세요:
$$- 6 {\color{red}{\int{\frac{\operatorname{asin}{\left(u \right)}}{5} d u}}} = - 6 {\color{red}{\left(\frac{\int{\operatorname{asin}{\left(u \right)} d u}}{5}\right)}}$$
적분 $$$\int{\operatorname{asin}{\left(u \right)} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$을 사용하십시오.
$$$\operatorname{\omega}=\operatorname{asin}{\left(u \right)}$$$와 $$$\operatorname{dv}=du$$$라고 하자.
그러면 $$$\operatorname{d\omega}=\left(\operatorname{asin}{\left(u \right)}\right)^{\prime }du=\frac{du}{\sqrt{1 - u^{2}}}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d u}=u$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$- \frac{6 {\color{red}{\int{\operatorname{asin}{\left(u \right)} d u}}}}{5}=- \frac{6 {\color{red}{\left(\operatorname{asin}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{\sqrt{1 - u^{2}}} d u}\right)}}}{5}=- \frac{6 {\color{red}{\left(u \operatorname{asin}{\left(u \right)} - \int{\frac{u}{\sqrt{1 - u^{2}}} d u}\right)}}}{5}$$
$$$v=1 - u^{2}$$$라 하자.
그러면 $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$u du = - \frac{dv}{2}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} + \frac{6 {\color{red}{\int{\frac{u}{\sqrt{1 - u^{2}}} d u}}}}{5} = - \frac{6 u \operatorname{asin}{\left(u \right)}}{5} + \frac{6 {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}}{5}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=- \frac{1}{2}$$$와 $$$f{\left(v \right)} = \frac{1}{\sqrt{v}}$$$에 적용하세요:
$$- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} + \frac{6 {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}}{5} = - \frac{6 u \operatorname{asin}{\left(u \right)}}{5} + \frac{6 {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{v}} d v}}{2}\right)}}}{5}$$
멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{2}$$$에 적용합니다:
$$- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{3 {\color{red}{\int{\frac{1}{\sqrt{v}} d v}}}}{5}=- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{3 {\color{red}{\int{v^{- \frac{1}{2}} d v}}}}{5}=- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{3 {\color{red}{\frac{v^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{5}=- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{3 {\color{red}{\left(2 v^{\frac{1}{2}}\right)}}}{5}=- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{3 {\color{red}{\left(2 \sqrt{v}\right)}}}{5}$$
다음 $$$v=1 - u^{2}$$$을 기억하라:
$$- \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{6 \sqrt{{\color{red}{v}}}}{5} = - \frac{6 u \operatorname{asin}{\left(u \right)}}{5} - \frac{6 \sqrt{{\color{red}{\left(1 - u^{2}\right)}}}}{5}$$
다음 $$$u=5 x$$$을 기억하라:
$$- \frac{6 \sqrt{1 - {\color{red}{u}}^{2}}}{5} - \frac{6 {\color{red}{u}} \operatorname{asin}{\left({\color{red}{u}} \right)}}{5} = - \frac{6 \sqrt{1 - {\color{red}{\left(5 x\right)}}^{2}}}{5} - \frac{6 {\color{red}{\left(5 x\right)}} \operatorname{asin}{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
따라서,
$$\int{\left(- 6 \operatorname{asin}{\left(5 x \right)}\right)d x} = - 6 x \operatorname{asin}{\left(5 x \right)} - \frac{6 \sqrt{1 - 25 x^{2}}}{5}$$
적분 상수를 추가하세요:
$$\int{\left(- 6 \operatorname{asin}{\left(5 x \right)}\right)d x} = - 6 x \operatorname{asin}{\left(5 x \right)} - \frac{6 \sqrt{1 - 25 x^{2}}}{5}+C$$
정답
$$$\int \left(- 6 \operatorname{asin}{\left(5 x \right)}\right)\, dx = \left(- 6 x \operatorname{asin}{\left(5 x \right)} - \frac{6 \sqrt{1 - 25 x^{2}}}{5}\right) + C$$$A