$$$t$$$에 대한 $$$- 8 a l t \left(t - 1\right) e^{- 5 t}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=- 8 a l$$$와 $$$f{\left(t \right)} = t \left(t - 1\right) e^{- 5 t}$$$에 적용하세요:
$${\color{red}{\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t}}} = {\color{red}{\left(- 8 a l \int{t \left(t - 1\right) e^{- 5 t} d t}\right)}}$$
적분 $$$\int{t \left(t - 1\right) e^{- 5 t} d t}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=t \left(t - 1\right)$$$와 $$$\operatorname{dv}=e^{- 5 t} dt$$$라고 하자.
그러면 $$$\operatorname{du}=\left(t \left(t - 1\right)\right)^{\prime }dt=\left(2 t - 1\right) dt$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$- 8 a l {\color{red}{\int{t \left(t - 1\right) e^{- 5 t} d t}}}=- 8 a l {\color{red}{\left(t \left(t - 1\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(2 t - 1\right) d t}\right)}}=- 8 a l {\color{red}{\left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{1}{5}$$$와 $$$f{\left(t \right)} = \left(1 - 2 t\right) e^{- 5 t}$$$에 적용하세요:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}}}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\left(\frac{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}{5}\right)}}\right)$$
적분 $$$\int{\left(1 - 2 t\right) e^{- 5 t} d t}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=1 - 2 t$$$와 $$$\operatorname{dv}=e^{- 5 t} dt$$$라고 하자.
그러면 $$$\operatorname{du}=\left(1 - 2 t\right)^{\prime }dt=- 2 dt$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(\left(1 - 2 t\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(-2\right) d t}\right)}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(- \frac{\left(1 - 2 t\right) e^{- 5 t}}{5} - \int{\frac{2 e^{- 5 t}}{5} d t}\right)}}}{5}\right)$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{2}{5}$$$와 $$$f{\left(t \right)} = e^{- 5 t}$$$에 적용하세요:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\int{\frac{2 e^{- 5 t}}{5} d t}}}}{5}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\left(\frac{2 \int{e^{- 5 t} d t}}{5}\right)}}}{5}\right)$$
$$$u=- 5 t$$$라 하자.
그러면 $$$du=\left(- 5 t\right)^{\prime }dt = - 5 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = - \frac{du}{5}$$$임을 얻습니다.
따라서,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{e^{- 5 t} d t}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right)$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=- \frac{1}{5}$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{5}\right)}}}{25}\right)$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{e^{u}}}}{125}\right)$$
다음 $$$u=- 5 t$$$을 기억하라:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{\left(- 5 t\right)}}}}{125}\right)$$
따라서,
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{- 5 t}}{125}\right)$$
간단히 하시오:
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}$$
적분 상수를 추가하세요:
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}+C$$
정답
$$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125} + C$$$A