$$$- \frac{1}{2 t^{\frac{4}{3}}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- \frac{1}{2 t^{\frac{4}{3}}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=- \frac{1}{2}$$$$$$f{\left(t \right)} = \frac{1}{t^{\frac{4}{3}}}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t}}} = {\color{red}{\left(- \frac{\int{\frac{1}{t^{\frac{4}{3}}} d t}}{2}\right)}}$$

멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{4}{3}$$$에 적용합니다:

$$- \frac{{\color{red}{\int{\frac{1}{t^{\frac{4}{3}}} d t}}}}{2}=- \frac{{\color{red}{\int{t^{- \frac{4}{3}} d t}}}}{2}=- \frac{{\color{red}{\frac{t^{- \frac{4}{3} + 1}}{- \frac{4}{3} + 1}}}}{2}=- \frac{{\color{red}{\left(- 3 t^{- \frac{1}{3}}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{3}{\sqrt[3]{t}}\right)}}}{2}$$

따라서,

$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}$$

적분 상수를 추가하세요:

$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}+C$$

정답

$$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt = \frac{3}{2 \sqrt[3]{t}} + C$$$A


Please try a new game Rotatly