$$$x^{2} e^{3 x}$$$의 적분
사용자 입력
$$$\int x^{2} e^{3 x}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{x^{2} e^{3 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{2}$$$와 $$$\operatorname{dv}=e^{3 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{x^{2} e^{3 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{3 x}}{3} - \int{\frac{2 x e^{3 x}}{3} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{2}{3}$$$와 $$$f{\left(x \right)} = x e^{3 x}$$$에 적용하세요:
$$\frac{x^{2} e^{3 x}}{3} - {\color{red}{\int{\frac{2 x e^{3 x}}{3} d x}}} = \frac{x^{2} e^{3 x}}{3} - {\color{red}{\left(\frac{2 \int{x e^{3 x} d x}}{3}\right)}}$$
적분 $$$\int{x e^{3 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=e^{3 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\int{x e^{3 x} d x}}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(x \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 1 d x}\right)}}}{3}=\frac{x^{2} e^{3 x}}{3} - \frac{2 {\color{red}{\left(\frac{x e^{3 x}}{3} - \int{\frac{e^{3 x}}{3} d x}\right)}}}{3}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(x \right)} = e^{3 x}$$$에 적용하세요:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{3 x}}{3} d x}}}}{3} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{3 x} d x}}{3}\right)}}}{3}$$
$$$u=3 x$$$라 하자.
그러면 $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{3 x} d x}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{\frac{e^{u}}{3} d u}}}}{9} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}}{9}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{\int{e^{u} d u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 {\color{red}{e^{u}}}}{27}$$
다음 $$$u=3 x$$$을 기억하라:
$$\frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{u}}}}{27} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{{\color{red}{\left(3 x\right)}}}}{27}$$
따라서,
$$\int{x^{2} e^{3 x} d x} = \frac{x^{2} e^{3 x}}{3} - \frac{2 x e^{3 x}}{9} + \frac{2 e^{3 x}}{27}$$
간단히 하시오:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}$$
적분 상수를 추가하세요:
$$\int{x^{2} e^{3 x} d x} = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27}+C$$
정답
$$$\int x^{2} e^{3 x}\, dx = \frac{\left(9 x^{2} - 6 x + 2\right) e^{3 x}}{27} + C$$$A