$$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx$$$을(를) 구하시오.

풀이

$$$x=\cosh{\left(u \right)}$$$라 하자.

따라서 $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (풀이 과정은 »에서 볼 수 있습니다).

또한 $$$u=\operatorname{acosh}{\left(x \right)}$$$가 성립한다.

피적분함수는 다음과 같이 바뀝니다

$$$\frac{\sqrt{x^{2} - 1}}{x^{2}} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}$$$

$$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ 항등식을 사용하시오:

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}}$$$

$$$\sinh{\left( u \right)} \ge 0$$$라고 가정하면, 다음을 얻습니다:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh^{2}{\left( u \right)}}$$$

적분은 다음과 같이 다시 쓸 수 있습니다

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}}$$

쌍곡탄젠트로 나타내시오:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}}$$

$$$v=\tanh{\left(u \right)}$$$라 하자.

그러면 $$$dv=\left(\tanh{\left(u \right)}\right)^{\prime }du = \operatorname{sech}^{2}{\left(u \right)} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\operatorname{sech}^{2}{\left(u \right)} du = dv$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=-1$$$$$$f{\left(v \right)} = \frac{v^{2}}{v^{2} - 1}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}} = {\color{red}{\left(- \int{\frac{v^{2}}{v^{2} - 1} d v}\right)}}$$

분수식을 다시 쓰고 분리하세요:

$$- {\color{red}{\int{\frac{v^{2}}{v^{2} - 1} d v}}} = - {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}}$$

각 항별로 적분하십시오:

$$- {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}} = - {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v^{2} - 1} d v}\right)}}$$

상수 법칙 $$$\int c\, dv = c v$$$$$$c=1$$$에 적용하십시오:

$$- \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{v}}$$

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$$- v - {\color{red}{\int{\frac{1}{v^{2} - 1} d v}}} = - v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}}$$

각 항별로 적분하십시오:

$$- v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}} = - v - {\color{red}{\left(\int{\frac{1}{2 \left(v - 1\right)} d v} - \int{\frac{1}{2 \left(v + 1\right)} d v}\right)}}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v - 1}$$$에 적용하세요:

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\int{\frac{1}{2 \left(v - 1\right)} d v}}} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\left(\frac{\int{\frac{1}{v - 1} d v}}{2}\right)}}$$

$$$w=v - 1$$$라 하자.

그러면 $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dv = dw$$$임을 얻습니다.

따라서,

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

$$$\frac{1}{w}$$$의 적분은 $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

다음 $$$w=v - 1$$$을 기억하라:

$$- v - \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v} = - v - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v + 1}$$$에 적용하세요:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\int{\frac{1}{2 \left(v + 1\right)} d v}}} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\left(\frac{\int{\frac{1}{v + 1} d v}}{2}\right)}}$$

$$$w=v + 1$$$라 하자.

그러면 $$$dw=\left(v + 1\right)^{\prime }dv = 1 dv$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dv = dw$$$임을 얻습니다.

따라서,

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v + 1} d v}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

$$$\frac{1}{w}$$$의 적분은 $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

다음 $$$w=v + 1$$$을 기억하라:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(v + 1\right)}}}\right| \right)}}{2}$$

다음 $$$v=\tanh{\left(u \right)}$$$을 기억하라:

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{v}}}\right| \right)}}{2} - {\color{red}{v}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} - {\color{red}{\tanh{\left(u \right)}}}$$

다음 $$$u=\operatorname{acosh}{\left(x \right)}$$$을 기억하라:

$$- \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{u}} \right)} = - \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}$$

따라서,

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = - \frac{\ln{\left(\left|{1 - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}$$

간단히 하시오:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}$$

적분 상수를 추가하세요:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}+C$$

정답

$$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx = \frac{\frac{x \left(- \ln\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right) + \ln\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right)\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x} + C$$$A


Please try a new game Rotatly