$$$\frac{\tan^{2}{\left(x \right)}}{2}$$$의 적분
사용자 입력
$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$에 적용하세요:
$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(x \right)} d x}}{2}\right)}}$$
$$$u=\tan{\left(x \right)}$$$라 하자.
그러면 $$$x=\operatorname{atan}{\left(u \right)}$$$ 및 $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (단계는 »에서 볼 수 있습니다).
따라서,
$$\frac{{\color{red}{\int{\tan^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2}$$
분수식을 다시 쓰고 분리하세요:
$$\frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{2}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{u}}}{2}$$
$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{u}{2} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{u}{2} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
다음 $$$u=\tan{\left(x \right)}$$$을 기억하라:
$$- \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}}{2}$$
따라서,
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = \frac{\tan{\left(x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2}$$
간단히 하시오:
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}+C$$
정답
$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx = \left(- \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}\right) + C$$$A