$$$- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 x^{5}} d x} - \int{\frac{1}{2 x - 5} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{1}{x^{5}}$$$에 적용하세요:
$$- \int{\frac{1}{2 x - 5} d x} + {\color{red}{\int{\frac{1}{2 x^{5}} d x}}} = - \int{\frac{1}{2 x - 5} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x^{5}} d x}}{2}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-5$$$에 적용합니다:
$$- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\int{\frac{1}{x^{5}} d x}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\int{x^{-5} d x}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\left(- \frac{x^{-4}}{4}\right)}}}{2}=- \int{\frac{1}{2 x - 5} d x} + \frac{{\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}}{2}$$
$$$u=2 x - 5$$$라 하자.
그러면 $$$du=\left(2 x - 5\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$$- {\color{red}{\int{\frac{1}{2 x - 5} d x}}} - \frac{1}{8 x^{4}} = - {\color{red}{\int{\frac{1}{2 u} d u}}} - \frac{1}{8 x^{4}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$- {\color{red}{\int{\frac{1}{2 u} d u}}} - \frac{1}{8 x^{4}} = - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}} - \frac{1}{8 x^{4}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} - \frac{1}{8 x^{4}} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2} - \frac{1}{8 x^{4}}$$
다음 $$$u=2 x - 5$$$을 기억하라:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \frac{1}{8 x^{4}} = - \frac{\ln{\left(\left|{{\color{red}{\left(2 x - 5\right)}}}\right| \right)}}{2} - \frac{1}{8 x^{4}}$$
따라서,
$$\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x} = - \frac{\ln{\left(\left|{2 x - 5}\right| \right)}}{2} - \frac{1}{8 x^{4}}$$
적분 상수를 추가하세요:
$$\int{\left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)d x} = - \frac{\ln{\left(\left|{2 x - 5}\right| \right)}}{2} - \frac{1}{8 x^{4}}+C$$
정답
$$$\int \left(- \frac{1}{2 x - 5} + \frac{1}{2 x^{5}}\right)\, dx = \left(- \frac{\ln\left(\left|{2 x - 5}\right|\right)}{2} - \frac{1}{8 x^{4}}\right) + C$$$A