$$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx$$$을(를) 구하시오.

풀이

입력이 다음과 같이 다시 쓰입니다: $$$\int{\left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)d x}=\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}$$$.

$$$u=x^{2}$$$라 하자.

그러면 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}}} = {\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=- \frac{1}{10}$$$$$$f{\left(u \right)} = \left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}} = {\color{red}{\left(- \frac{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}{10}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{2}{5}}}{2}$$$:

$$- \frac{{\color{red}{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}}}{10} = - \frac{{\color{red}{\frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{\ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}}}}{10}$$

다음 $$$u=x^{2}$$$을 기억하라:

$$- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{u}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{x^{2}}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

따라서,

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

간단히 하시오:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}$$

적분 상수를 추가하세요:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}+C$$

정답

$$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly