$$$\frac{x - 7}{823543 x^{7}}$$$의 적분
사용자 입력
$$$\int \frac{x - 7}{823543 x^{7}}\, dx$$$을(를) 구하시오.
풀이
입력이 다음과 같이 다시 쓰입니다: $$$\int{\frac{x - 7}{823543 x^{7}} d x}=\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x}$$$.
피적분함수를 단순화하세요.:
$${\color{red}{\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x}}} = {\color{red}{\int{\frac{x - 7}{823543 x^{7}} d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{823543}$$$와 $$$f{\left(x \right)} = \frac{x - 7}{x^{7}}$$$에 적용하세요:
$${\color{red}{\int{\frac{x - 7}{823543 x^{7}} d x}}} = {\color{red}{\left(\frac{\int{\frac{x - 7}{x^{7}} d x}}{823543}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{x - 7}{x^{7}} d x}}}}{823543} = \frac{{\color{red}{\int{\left(\frac{1}{x^{6}} - \frac{7}{x^{7}}\right)d x}}}}{823543}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(\frac{1}{x^{6}} - \frac{7}{x^{7}}\right)d x}}}}{823543} = \frac{{\color{red}{\left(- \int{\frac{7}{x^{7}} d x} + \int{\frac{1}{x^{6}} d x}\right)}}}{823543}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-6$$$에 적용합니다:
$$- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\int{\frac{1}{x^{6}} d x}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\int{x^{-6} d x}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\left(- \frac{x^{-5}}{5}\right)}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}}{823543}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=7$$$와 $$$f{\left(x \right)} = \frac{1}{x^{7}}$$$에 적용하세요:
$$- \frac{{\color{red}{\int{\frac{7}{x^{7}} d x}}}}{823543} - \frac{1}{4117715 x^{5}} = - \frac{{\color{red}{\left(7 \int{\frac{1}{x^{7}} d x}\right)}}}{823543} - \frac{1}{4117715 x^{5}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-7$$$에 적용합니다:
$$- \frac{{\color{red}{\int{\frac{1}{x^{7}} d x}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\int{x^{-7} d x}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{117649} - \frac{1}{4117715 x^{5}}$$
따라서,
$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = - \frac{1}{4117715 x^{5}} + \frac{1}{705894 x^{6}}$$
간단히 하시오:
$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = \frac{35 - 6 x}{24706290 x^{6}}$$
적분 상수를 추가하세요:
$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = \frac{35 - 6 x}{24706290 x^{6}}+C$$
정답
$$$\int \frac{x - 7}{823543 x^{7}}\, dx = \frac{35 - 6 x}{24706290 x^{6}} + C$$$A