$$$\frac{4 t}{\sqrt{3 t^{2} - 7}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{4 t}{\sqrt{3 t^{2} - 7}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{4 t}{\sqrt{3 t^{2} - 7}}\, dt$$$을(를) 구하시오.

풀이

$$$u=3 t^{2} - 7$$$라 하자.

그러면 $$$du=\left(3 t^{2} - 7\right)^{\prime }dt = 6 t dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$t dt = \frac{du}{6}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t}}} = {\color{red}{\int{\frac{2}{3 \sqrt{u}} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{2}{3}$$$$$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$에 적용하세요:

$${\color{red}{\int{\frac{2}{3 \sqrt{u}} d u}}} = {\color{red}{\left(\frac{2 \int{\frac{1}{\sqrt{u}} d u}}{3}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{2}$$$에 적용합니다:

$$\frac{2 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{3}=\frac{2 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{3}=\frac{2 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{3}=\frac{2 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{3}=\frac{2 {\color{red}{\left(2 \sqrt{u}\right)}}}{3}$$

다음 $$$u=3 t^{2} - 7$$$을 기억하라:

$$\frac{4 \sqrt{{\color{red}{u}}}}{3} = \frac{4 \sqrt{{\color{red}{\left(3 t^{2} - 7\right)}}}}{3}$$

따라서,

$$\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t} = \frac{4 \sqrt{3 t^{2} - 7}}{3}$$

적분 상수를 추가하세요:

$$\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t} = \frac{4 \sqrt{3 t^{2} - 7}}{3}+C$$

정답

$$$\int \frac{4 t}{\sqrt{3 t^{2} - 7}}\, dt = \frac{4 \sqrt{3 t^{2} - 7}}{3} + C$$$A


Please try a new game Rotatly