$$$\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{\sqrt{2}}{4}$$$와 $$$f{\left(x \right)} = \frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}$$$에 적용하세요:
$${\color{red}{\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}} d x}}{4}\right)}}$$
$$$u=\sin{\left(3 x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(3 x \right)}\right)^{\prime }dx = 3 \cos{\left(3 x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(3 x \right)} dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$$\frac{\sqrt{2} {\color{red}{\int{\frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}} d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \frac{\sqrt{2} {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{12} = \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
다음 $$$u=\sin{\left(3 x \right)}$$$을 기억하라:
$$\frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\sin{\left(3 x \right)}}}}\right| \right)}}{12}$$
따라서,
$$\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x} = \frac{\sqrt{2} \ln{\left(\left|{\sin{\left(3 x \right)}}\right| \right)}}{12}$$
적분 상수를 추가하세요:
$$\int{\frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}} d x} = \frac{\sqrt{2} \ln{\left(\left|{\sin{\left(3 x \right)}}\right| \right)}}{12}+C$$
정답
$$$\int \frac{\sqrt{2} \cos{\left(3 x \right)}}{4 \sin{\left(3 x \right)}}\, dx = \frac{\sqrt{2} \ln\left(\left|{\sin{\left(3 x \right)}}\right|\right)}{12} + C$$$A