$$$\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt$$$을(를) 구하시오.
풀이
공식 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$에 $$$\alpha=2 t$$$와 $$$\beta=4 t$$$를 대입하여 $$$\sin\left(2 t \right)\cos\left(4 t \right)$$$을(를) 다시 쓰십시오.:
$${\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}}$$
식을 전개하시오:
$${\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(t \right)} = - \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t} + \int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}\right)}}}{2}$$
공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=2 t$$$와 $$$\beta=4 t$$$를 대입하여 $$$\sin\left(2 t \right)\sin\left(4 t \right)$$$을(를) 다시 쓰십시오.:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2}$$
식을 전개하시오:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}$$$에 적용하세요:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$
각 항별로 적분하십시오:
$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}}}{4} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}\right)}}}{4}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\pi}{20}$$$와 $$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$에 적용하세요:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}}}}{4} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(6 t \right)} d t}}{20}\right)}}}{4}$$
$$$u=6 t$$$라 하자.
그러면 $$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{du}{6}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{6}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{80}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{480}$$
다음 $$$u=6 t$$$을 기억하라:
$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{u}} \right)}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{\left(6 t\right)}} \right)}}{480}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\pi}{20}$$$와 $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$에 적용하세요:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$
$$$u=2 t$$$라 하자.
그러면 $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{du}{2}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{80}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{160}$$
다음 $$$u=2 t$$$을 기억하라:
$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{\left(2 t\right)}} \right)}}{160}$$
공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=4 t$$$와 $$$\beta=6 t$$$를 대입하여 $$$\sin\left(4 t \right)\sin\left(6 t \right)$$$을(를) 다시 쓰십시오.:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2}$$
식을 전개하시오:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}$$$에 적용하세요:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$
각 항별로 적분하십시오:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}\right)}}}{4}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\pi}{20}$$$와 $$$f{\left(t \right)} = \cos{\left(10 t \right)}$$$에 적용하세요:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(10 t \right)} d t}}{20}\right)}}}{4}$$
$$$u=10 t$$$라 하자.
그러면 $$$du=\left(10 t\right)^{\prime }dt = 10 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{du}{10}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(10 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{10}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{10}\right)}}}{80}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{800}$$
다음 $$$u=10 t$$$을 기억하라:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{\left(10 t\right)}} \right)}}{800}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\pi}{20}$$$와 $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$에 적용하세요:
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$
이미 계산된 적분 $$$\int{\cos{\left(2 t \right)} d t}$$$:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
따라서,
$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{80}$$
따라서,
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800}$$
간단히 하시오:
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}$$
적분 상수를 추가하세요:
$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}+C$$
정답
$$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400} + C$$$A