$$$- 3 y^{5} + y^{2}$$$의 적분
사용자 입력
$$$\int \left(- 3 y^{5} + y^{2}\right)\, dy$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- 3 y^{5} + y^{2}\right)d y}}} = {\color{red}{\left(\int{y^{2} d y} - \int{3 y^{5} d y}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \int{3 y^{5} d y} + {\color{red}{\int{y^{2} d y}}}=- \int{3 y^{5} d y} + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- \int{3 y^{5} d y} + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$을 $$$c=3$$$와 $$$f{\left(y \right)} = y^{5}$$$에 적용하세요:
$$\frac{y^{3}}{3} - {\color{red}{\int{3 y^{5} d y}}} = \frac{y^{3}}{3} - {\color{red}{\left(3 \int{y^{5} d y}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=5$$$에 적용합니다:
$$\frac{y^{3}}{3} - 3 {\color{red}{\int{y^{5} d y}}}=\frac{y^{3}}{3} - 3 {\color{red}{\frac{y^{1 + 5}}{1 + 5}}}=\frac{y^{3}}{3} - 3 {\color{red}{\left(\frac{y^{6}}{6}\right)}}$$
따라서,
$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}$$
적분 상수를 추가하세요:
$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}+C$$
정답
$$$\int \left(- 3 y^{5} + y^{2}\right)\, dy = \left(- \frac{y^{6}}{2} + \frac{y^{3}}{3}\right) + C$$$A