$$$\left(y^{2} - 3\right)^{3}$$$의 적분
사용자 입력
$$$\int \left(y^{2} - 3\right)^{3}\, dy$$$을(를) 구하시오.
풀이
Expand the expression:
$${\color{red}{\int{\left(y^{2} - 3\right)^{3} d y}}} = {\color{red}{\int{\left(y^{6} - 9 y^{4} + 27 y^{2} - 27\right)d y}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(y^{6} - 9 y^{4} + 27 y^{2} - 27\right)d y}}} = {\color{red}{\left(- \int{27 d y} + \int{27 y^{2} d y} - \int{9 y^{4} d y} + \int{y^{6} d y}\right)}}$$
상수 법칙 $$$\int c\, dy = c y$$$을 $$$c=27$$$에 적용하십시오:
$$\int{27 y^{2} d y} - \int{9 y^{4} d y} + \int{y^{6} d y} - {\color{red}{\int{27 d y}}} = \int{27 y^{2} d y} - \int{9 y^{4} d y} + \int{y^{6} d y} - {\color{red}{\left(27 y\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=6$$$에 적용합니다:
$$- 27 y + \int{27 y^{2} d y} - \int{9 y^{4} d y} + {\color{red}{\int{y^{6} d y}}}=- 27 y + \int{27 y^{2} d y} - \int{9 y^{4} d y} + {\color{red}{\frac{y^{1 + 6}}{1 + 6}}}=- 27 y + \int{27 y^{2} d y} - \int{9 y^{4} d y} + {\color{red}{\left(\frac{y^{7}}{7}\right)}}$$
상수배 법칙 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$을 $$$c=9$$$와 $$$f{\left(y \right)} = y^{4}$$$에 적용하세요:
$$\frac{y^{7}}{7} - 27 y + \int{27 y^{2} d y} - {\color{red}{\int{9 y^{4} d y}}} = \frac{y^{7}}{7} - 27 y + \int{27 y^{2} d y} - {\color{red}{\left(9 \int{y^{4} d y}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$\frac{y^{7}}{7} - 27 y + \int{27 y^{2} d y} - 9 {\color{red}{\int{y^{4} d y}}}=\frac{y^{7}}{7} - 27 y + \int{27 y^{2} d y} - 9 {\color{red}{\frac{y^{1 + 4}}{1 + 4}}}=\frac{y^{7}}{7} - 27 y + \int{27 y^{2} d y} - 9 {\color{red}{\left(\frac{y^{5}}{5}\right)}}$$
상수배 법칙 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$을 $$$c=27$$$와 $$$f{\left(y \right)} = y^{2}$$$에 적용하세요:
$$\frac{y^{7}}{7} - \frac{9 y^{5}}{5} - 27 y + {\color{red}{\int{27 y^{2} d y}}} = \frac{y^{7}}{7} - \frac{9 y^{5}}{5} - 27 y + {\color{red}{\left(27 \int{y^{2} d y}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{y^{7}}{7} - \frac{9 y^{5}}{5} - 27 y + 27 {\color{red}{\int{y^{2} d y}}}=\frac{y^{7}}{7} - \frac{9 y^{5}}{5} - 27 y + 27 {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=\frac{y^{7}}{7} - \frac{9 y^{5}}{5} - 27 y + 27 {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
따라서,
$$\int{\left(y^{2} - 3\right)^{3} d y} = \frac{y^{7}}{7} - \frac{9 y^{5}}{5} + 9 y^{3} - 27 y$$
간단히 하시오:
$$\int{\left(y^{2} - 3\right)^{3} d y} = \frac{y \left(5 y^{6} - 63 y^{4} + 315 y^{2} - 945\right)}{35}$$
적분 상수를 추가하세요:
$$\int{\left(y^{2} - 3\right)^{3} d y} = \frac{y \left(5 y^{6} - 63 y^{4} + 315 y^{2} - 945\right)}{35}+C$$
정답
$$$\int \left(y^{2} - 3\right)^{3}\, dy = \frac{y \left(5 y^{6} - 63 y^{4} + 315 y^{2} - 945\right)}{35} + C$$$A