$$$x^{3} e^{x^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$x^{3} e^{x^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int x^{3} e^{x^{2}}\, dx$$$을(를) 구하시오.

풀이

$$$u=x^{2}$$$라 하자.

그러면 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{x^{3} e^{x^{2}} d x}}} = {\color{red}{\int{\frac{u e^{u}}{2} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = u e^{u}$$$에 적용하세요:

$${\color{red}{\int{\frac{u e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{u} d u}}{2}\right)}}$$

적분 $$$\int{u e^{u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$을 사용하십시오.

$$$\operatorname{c}=u$$$$$$\operatorname{dv}=e^{u} du$$$라고 하자.

그러면 $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (»에서 풀이 과정을 볼 수 있음).

적분은 다음과 같이 됩니다.

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{2}$$

지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:

$$\frac{u e^{u}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{u e^{u}}{2} - \frac{{\color{red}{e^{u}}}}{2}$$

다음 $$$u=x^{2}$$$을 기억하라:

$$- \frac{e^{{\color{red}{u}}}}{2} + \frac{{\color{red}{u}} e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{x^{2}}}}}{2} + \frac{{\color{red}{x^{2}}} e^{{\color{red}{x^{2}}}}}{2}$$

따라서,

$$\int{x^{3} e^{x^{2}} d x} = \frac{x^{2} e^{x^{2}}}{2} - \frac{e^{x^{2}}}{2}$$

간단히 하시오:

$$\int{x^{3} e^{x^{2}} d x} = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2}$$

적분 상수를 추가하세요:

$$\int{x^{3} e^{x^{2}} d x} = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2}+C$$

정답

$$$\int x^{3} e^{x^{2}}\, dx = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2} + C$$$A


Please try a new game Rotatly