$$$\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{1}{2}$$$에 적용합니다:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sin{\left(x \right)}}}^{\frac{3}{2}}}{3}$$
따라서,
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}$$
적분 상수를 추가하세요:
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}+C$$
정답
$$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3} + C$$$A