$$$\frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=\ln{\left(x \right)}$$$라 하자.

그러면 $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{x} = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}}$$

$$$v=\ln{\left(u \right)}$$$라 하자.

그러면 $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{du}{u} = dv$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$${\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}} = {\color{red}{\int{v d v}}}$$

멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:

$${\color{red}{\int{v d v}}}={\color{red}{\frac{v^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{v^{2}}{2}\right)}}$$

다음 $$$v=\ln{\left(u \right)}$$$을 기억하라:

$$\frac{{\color{red}{v}}^{2}}{2} = \frac{{\color{red}{\ln{\left(u \right)}}}^{2}}{2}$$

다음 $$$u=\ln{\left(x \right)}$$$을 기억하라:

$$\frac{\ln{\left({\color{red}{u}} \right)}^{2}}{2} = \frac{\ln{\left({\color{red}{\ln{\left(x \right)}}} \right)}^{2}}{2}$$

따라서,

$$\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\ln{\left(x \right)} \right)}^{2}}{2}$$

적분 상수를 추가하세요:

$$\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\ln{\left(x \right)} \right)}^{2}}{2}+C$$

정답

$$$\int \frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}\, dx = \frac{\ln^{2}\left(\ln\left(x\right)\right)}{2} + C$$$A


Please try a new game Rotatly