$$$x$$$에 대한 $$$8 e a z - \frac{28 x}{3} - e$$$의 적분

계산기는 $$$x$$$에 대한 $$$8 e a z - \frac{28 x}{3} - e$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(8 e a z - \frac{28 x}{3} - e\right)\, dx$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x}}} = {\color{red}{\left(- \int{e d x} - \int{\frac{28 x}{3} d x} + \int{8 e a z d x}\right)}}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=e$$$에 적용하십시오:

$$- \int{\frac{28 x}{3} d x} + \int{8 e a z d x} - {\color{red}{\int{e d x}}} = - \int{\frac{28 x}{3} d x} + \int{8 e a z d x} - {\color{red}{e x}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{28}{3}$$$$$$f{\left(x \right)} = x$$$에 적용하세요:

$$- e x + \int{8 e a z d x} - {\color{red}{\int{\frac{28 x}{3} d x}}} = - e x + \int{8 e a z d x} - {\color{red}{\left(\frac{28 \int{x d x}}{3}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:

$$- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\int{x d x}}}}{3}=- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{3}=- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{3}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=8 e a z$$$에 적용하십시오:

$$- \frac{14 x^{2}}{3} - e x + {\color{red}{\int{8 e a z d x}}} = - \frac{14 x^{2}}{3} - e x + {\color{red}{\left(8 e a x z\right)}}$$

따라서,

$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = 8 e a x z - \frac{14 x^{2}}{3} - e x$$

간단히 하시오:

$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3}$$

적분 상수를 추가하세요:

$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3}+C$$

정답

$$$\int \left(8 e a z - \frac{28 x}{3} - e\right)\, dx = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3} + C$$$A


Please try a new game Rotatly