$$$5 x^{38} \left(6 x^{3} - 9\right)$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$5 x^{38} \left(6 x^{3} - 9\right)$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int 5 x^{38} \left(6 x^{3} - 9\right)\, dx$$$을(를) 구하시오.

풀이

입력이 다음과 같이 다시 쓰입니다: $$$\int{5 x^{38} \left(6 x^{3} - 9\right) d x}=\int{x^{38} \left(30 x^{3} - 45\right) d x}$$$.

피적분함수를 단순화하세요.:

$${\color{red}{\int{x^{38} \left(30 x^{3} - 45\right) d x}}} = {\color{red}{\int{15 x^{38} \left(2 x^{3} - 3\right) d x}}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=15$$$$$$f{\left(x \right)} = x^{38} \left(2 x^{3} - 3\right)$$$에 적용하세요:

$${\color{red}{\int{15 x^{38} \left(2 x^{3} - 3\right) d x}}} = {\color{red}{\left(15 \int{x^{38} \left(2 x^{3} - 3\right) d x}\right)}}$$

Expand the expression:

$$15 {\color{red}{\int{x^{38} \left(2 x^{3} - 3\right) d x}}} = 15 {\color{red}{\int{\left(2 x^{41} - 3 x^{38}\right)d x}}}$$

각 항별로 적분하십시오:

$$15 {\color{red}{\int{\left(2 x^{41} - 3 x^{38}\right)d x}}} = 15 {\color{red}{\left(- \int{3 x^{38} d x} + \int{2 x^{41} d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=3$$$$$$f{\left(x \right)} = x^{38}$$$에 적용하세요:

$$15 \int{2 x^{41} d x} - 15 {\color{red}{\int{3 x^{38} d x}}} = 15 \int{2 x^{41} d x} - 15 {\color{red}{\left(3 \int{x^{38} d x}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=38$$$에 적용합니다:

$$15 \int{2 x^{41} d x} - 45 {\color{red}{\int{x^{38} d x}}}=15 \int{2 x^{41} d x} - 45 {\color{red}{\frac{x^{1 + 38}}{1 + 38}}}=15 \int{2 x^{41} d x} - 45 {\color{red}{\left(\frac{x^{39}}{39}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=2$$$$$$f{\left(x \right)} = x^{41}$$$에 적용하세요:

$$- \frac{15 x^{39}}{13} + 15 {\color{red}{\int{2 x^{41} d x}}} = - \frac{15 x^{39}}{13} + 15 {\color{red}{\left(2 \int{x^{41} d x}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=41$$$에 적용합니다:

$$- \frac{15 x^{39}}{13} + 30 {\color{red}{\int{x^{41} d x}}}=- \frac{15 x^{39}}{13} + 30 {\color{red}{\frac{x^{1 + 41}}{1 + 41}}}=- \frac{15 x^{39}}{13} + 30 {\color{red}{\left(\frac{x^{42}}{42}\right)}}$$

따라서,

$$\int{x^{38} \left(30 x^{3} - 45\right) d x} = \frac{5 x^{42}}{7} - \frac{15 x^{39}}{13}$$

간단히 하시오:

$$\int{x^{38} \left(30 x^{3} - 45\right) d x} = \frac{5 x^{39} \left(13 x^{3} - 21\right)}{91}$$

적분 상수를 추가하세요:

$$\int{x^{38} \left(30 x^{3} - 45\right) d x} = \frac{5 x^{39} \left(13 x^{3} - 21\right)}{91}+C$$

정답

$$$\int 5 x^{38} \left(6 x^{3} - 9\right)\, dx = \frac{5 x^{39} \left(13 x^{3} - 21\right)}{91} + C$$$A


Please try a new game Rotatly